
Elementary Hilbert 

Space Theory 

Inner Products and Linear Functionals 

4.1 Definition A complex vector space H is called an inner product 
space (or unitary space) if to each ordered pair of vectors x and y E H 
there is associated a complex numder (z,y), the so-called "inner product" 
(or "scalar productf') of x and y, such that the following rules hold: 

(a) (y,x) = (G). (The bar denotes complex conjugation.) 
(b)  (x + y, 2 )  = (x ,~)  + (y,z) if x, y, and 8 H .  
(c) (m,y) = ar(x,y) if x and y 8 H and ar is a scalar. 
(d) (x,x) 2 0 for all x 8 H. 
(e) (x,x) = 0 only if x = 0. 

Let us list some immediate consequences of these axioms : 

(c) implies that (0,y) = 0 for all y 8 H. 
(b) and (c) may be combined into the statement: For every y E H, the 

mapping x + (x,y) is a linear functional on H. 
(a) and (c) show that (x,ay) = a(x,y). 
(a) and (b) imply the second distributive Iaw: 

(2, X + 9) = (z,x) + (z,Y)* 
By (d), we may define Ilxll) the norm of the vector x 8 H, to be 
the nonnegative square root of (x,x). Thus 

0 Ilxll" (3,~). 
4.2 The Schwarz Inequality The properties 4.1 (a) to (d) imply that 

t(x,9)I 5 11x11 11311 
for a l lxand  y E H .  
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PROOF Pu t  A = Ilx]12, B = J(x)y)l, and C = Ilyl14. There is a com- 
plex number a such that la1 = 1 and a(y,x) = BB. For any real r, 
we then have 

The expression on the left is real and not negative. Hence 

for every real r. If C = 0, we must have B = 0, otherwise (2) is 
false for large positive r. If C > 0, take r = B/C in (2), and obtain 
B4 5 AC. 

4.3 The Triangle Inequality For x and y E HJ we have 

PROOF By the Schwars inequality, 

4.4 Definition It follows from the triangle inequality that 

If we define the distance between x and y to be [lx - 911, d l  the axioms for 
a metric space are satisfied; here, for the first time, we use part (e) of 
Definition 4.1. 

Thus H is now a metric space. If this metric space is complete, i.e., 
if every Cauchy sequence converges in H, then H is called a HiZbert space. 

Throughout the rest of this chapter, the letter H will denote a Hilbert 
9 

space. 

4.5 Examples 

(a) For any fixed n, the set Cn of all n-tuples 

where 41, . . . , f ,  are complex numbers, is a Hilbert space if 
addition and scalar multiplication are defined componentwise, as 
usual, and if 

n 

( x , ~ )  = 2 4jfj (y = (71, 0 * . ,7n))- 
j=l 

(b) If p is any positive measure, L2(p) is a Hilbert space, with inner 
product 

( $ 9 ~ )  = /, $0 dr- 
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The  integrand on the right is in L1(p), by Theorem 3.8, so that 
V,g) i s  well defined. Note that 

The completeness of Lyp)  (Theorem 3.11) shows that L 2 ( 4  is 
indeed a Hilbert space. [We recall that L2(10 should be regarded 
as a space of equivalence classes of functions; compare the dis- 
cussion in Sec. 3.10.1 

For H = L2tP), the inequalities 4.2 and 4.3 turn out to be 
special cases of the inequaIities of Hijlder and Minkowski. 

Note that Example (a) is a special case of (b). What is the 
measure in (a)? 

(c) The  vector space of a11 continuous complex functions on [0,1] is 
a n  inner product space if 

but  is not a Hilbert space. 

4.6 Theorem For any fixed y 8 H, the mappings 

are wntinuous functions on H .  

aRoopl The Schwarz inequality implies that 

which proves that x -+ (x, y) is, in fact, uniformly continuous, and 
the same is true for x + (y,x). The triangle inequality llxlll -< 
11x1 - 2211 + llxtll yields 

1134 - 11~211 I 11x1 - x2ll, 
and if we interchange xI and x2 we see that 

I l l ~ l ~ l  - Ilzzlll I 11x1 - 41 
for a11 XI and 2 2  E H. Thus x + llxll is aho uniformly continuous. 

4.7 Subspaces A subset M of a vector space V is called a subspace of V 
if M is itself a vector space, relative to the addition and scalar multiplic* 
tion which are defined in V. A necessary and sufficient condition for a 
set M C V to be a subspace is that  x + y E M and ax 8 M whenever 
x and y e M and a is a scalar. 

I n  the vector space context, the word "subspace" will always have this 
meaning. Sometimes, for emphasis, we may use the  term "linear sub- 
space" in place of subspaice. 
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For example, if V is the vector space of d l  complex functions on a set S, 
the set of all bounded complex functions on S is a subspace of V, but the 
set of aH j a V with I j(x)l 5 1 for all x a S is not. The real vector space 
R8 has the following subspaces, and no others: (a) R8,  ( b )  all planes 
through the origin 0, (c)  all straight lines through 0, and ( d )  { O } .  

A closed subspace M of H is a subspace which is a closed set relative to 
the topology induced by the metric of H. 

4.8 Convex Sets A set E in a vector space V is said to be convex if it has 
the following geometric property: Whenever x a E, y a E, and 0 < t < I ,  
the point 

zt = (1 - t ) x  + ty  

also lies in E. As t runs from 0 to 1, one may visualize zt as describing a 
straight line segment in V, from x to y. Convexity requires that E con- 
tain the segments between any two of its points. 

It is clear that  every subspace of. V is convex. 
Also, if E is convex, so is each of its translates 

4.9 Orthogonality If ( x , y )  = 0 for some x and y E H, we say that x is 
orthogonal to y, and sometimes write x L y. Since ( x , y )  = 0 implies 
( y , x )  = 0, the relation L is symmetric. 

Let xL  denote the set of d l  y a H which are orthogonal to x ;  and if M 
is a subspace of H ,  let M L  be the set of aH y E H which are orthogonal to 
every x a M. 

Note that  x L  is a subspace of H,  since x 1 y and x I y' implies 
x L ( y  + 9') and x L a y .  Also, x L  is precisdy the set of points where 
the continuous function y + (x , y )  is 0. Hence xL  is a closed subspace of 
H. Since 

M" = n x", 
z e M  

M L  is an intersection of closed subspaces, and it follows that M L  is a 
closed subspace of H .  

4.10 Theorem Every n m m p t y ,  closed, convex set E in a Hilbert space H 
contains a unique element of smallest norm.  

In  other words, there is one and only one xo a E such that  llxoll 2 l l ~ l l  
for every x a E. 

PROOF An easy computation, using only the properties listed in 
Definition 4.1, establishes the identity 
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This is known as' the parallelogram law: If we interpret llxll to be the 
length of the vector x, (1) says that the sum of the squares of the 
diagonals of a parallelogram is equal to the sum of the squares of its 
sides, a familiar proposition in plane geometry. 

Let 6 = inf {![x11: x s E l .  For any x and y E E ,  we apply ( 1 )  to 
+x and &y and obtain 

Since E is convex, (x + y)/2 E E. Hence 

(3 )  113 - y\I2 I 211~11~ + 211y112 - 4a2 ( x  and y E E ) .  

If also llxll = 11y11 = 6 ,  then (3) implies x = y, and we have proved 
the uniqueness assertion of the theorem. 

The definition of 6 shows that there is a sequence { y, f in E so that 
[ly.ll-+ 6 as n -+ m. Replace x and y in (3 )  by y, and y,. Then, 
as n + .o and rn + m, the right side of (3) will tend to 0. This 
shows that ( 9 , )  is a Cauchy sequence. Since H is compIete, there 
exists an xo s H so that y, + $0, i.e., ]lyn - xoll 4 0,  as n + 00. 
Since y, s E and E is closed, X O  e E. Since the norm is a continuous 
function on H (Theorem 4.6), i t  follows that 

4.11 Theorem Let M be a closed subspace of H. There exists a unique 
pair of mappings P and Q such that P maps H into M ,  Q maps H into M L ,  
and 

for all x s H .  These mappings hwe the following further properties: 

(2)  If x s M ,  then P x  = x, Qx = 0 ;  ij x E M I ,  then P X  = 0, &X = x. 

(5)  P and Q are linear mappings. 

Corollary I j  A4 # H, there exists a y 8 H ,  y # 0 ,  such that y 1 M. 

P and Q are called the orthogonal projections of H onto M and ML. 

PROOF For any x s H ,  the set x + M = { x  + y :  y ~ 2 1 f l  is closed 
and convex, Define Qx to be the unique element of smallest norm in 
x + M; this exists, by Theorem 4.10.  Define P x  = x - Qx. Then 
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(1) holds. Since Qx e x  + M ,  it is clear tbat P x  a M. Thus P maps 
H into M, 

We next have to show that ( Q x , ~ )  = 0 for all y  e  M. Assume 
llyll = 1, without bss of generality, and put z = Qx. The minimal 
property of Qx shows that 

for every scalar a. This simplifies to 

With a = ( z , y ) ,  this givw 0 5 - I(z,y)Ie, so that ( z , y )  = 0. Thus 
Q maps H into M L .  

Now if x = xo + xl ,  with xo P M, x1 a ML, then 

Sincexo- P x e M , Q x  - xlaML,andMnML = {O)[animrnediate 
consequence of the fact that (x,x)  = 0 implies x = 01, we have 
xo = P x ,  x1 = Qx, which proves the uniqueness assertion. 

The linearity of P and Q is proved similarly: applying, (1) to x,  
to y, and to ax + By, we obtain 

The left side is in M, the right side in ML; hence both are 0, so P 
and Q are linear. 

Property (2) follows from (1); (3) was iused to define P ;  and (4) 
follows from (I), since (Px,Qx)  = 0. TO prove the corollary, take 
x r H ,  x  # M, and puty = Q x ;  since x z P x ,  y  z 0. 

W; have already observed that x -+ (x,y)  is, for each y  r H, a continu- 
ous linear functional on H .  It is a very important fact that all continuous 
linear functionals on H are of this type. 

4.12 Theorem If L i s  a continuous linear functional on H, then there is a 
unique y  a H such that 

PROOF If Lx = 0 for all x,  take y  = 0. Otherwise, define 

The linearity of L shows that M is a subspace. The continuity of 
L shows that M is closed. Since Lx # 0 for some x a H ,  Theorem 
4.11 shows that ML does not consist of 0 alone. 
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It is clear that we must look for our desired y in MA, and that we 
must have Ly = (y ,y). 

Choose z a MI, z # 0. Then z # M, hence Lz # 0. Put y = arz, 
where E = (Lz) / (z ,z) .  Then y e ML, Ly = (y,y), and y # 0. For 
any x a H, put 

Lx = x - -  Lx 
(Y,Y) 

and x" = - 
(Y ,Y) y. 

Then Lx' = 0, hence r' e M, hence (xl,y) = 0, hence 

which gives the desired representation of Lx. 
The uniqueness of y is easily proved, for if (x,y) = (x,yf) for all 

x e H, set z = y - y'; then (x,z) = 0 for all x a H; in particular, 
(z,z) = 0, hence z = 0. 

Orthonormal Sets 

4.13 Definitions If V is a vector space, if XI, . . . , x k  a V, and if 
cl, . . . c k  are scalars, then clxl + . + ckxk  is called a linear combi- 
nation of $1, . . . , xk. The set {xl, . . . , xk 1 is called independent if 
clxl + + ckxk = Oimplies that cl = . . = c k  = 0. A set S C V 
is independent if every finite subset of S is independent. The set IS] of 
all linear combinations of all finite subsets of S (also called the set of all 
+finite 2inear combinations of members of S) is dearly a vector space; [Sj 
is the smallest subspace of V which contains S; [S] is called the span of S, 
or the space spanned by S. 

A set of vectors u, in a Hilbert space H, where a runs through some 
index set A ,  is called orthonoma2 if it satisfies the orthogonality relations 
(u,,up) = 0 for all a # @, a e A ,  and @ e A,  and if it is normalized so that 
11u.11 = 1 for each a t. A. In other words, {u, 1 is orthonormal provided 
that 

If (u,: a e A ] is orthonormal, we associate with each x a H a complex 
function Z on the index set A, defined by 

(2) $(a) * (x,u~) (a a A). 

One sometimes c d s  the numbers the Fourier coe&ients of x, relative 
to the set (u,] . 



82 Real and complex analysis 

4-14 Theorem If us . . . , ur is a n  orthmrmnzal set, and x = 2 c a n ,  
1 

then 

PROOF Apply the relations 4.13 (1). 

Corollary Every orthonormal set is  independent. 

PROOF This follows from (2). 

4.15 A n  Approximation Problem Let vr, . . . , v k  be a set of inde- 
pendent vectors in H ,  and suppose x s H. The problem is to Jind a 
method oj computing the minimum value oj 

where cl ,  . . . , ck range over all scalars, and to Jind the corresponding values 
of c1, . . . , ck- 

Let M be the span of v l ,  . . . , v k .  If we knew that M is closed, we 
could apply Theorem 4.11 and deduce the existence of a unique mini- 
mizing element so := Px, where 

which also has the property that x - so E MA. These facts could then 
be used to obtain information about the coefficients E';, . . . , $ in (2). 

Since M is the span of a finite set of vectors, i t  may seem obvious that M 
is cbsed. One may prove it by induction, observing that { O )  is certainly 
closed and proceeding with the aid of the following lemma: 

If V is a closed subspace of H ,  i f  y s H ,  y # V ,  and V* i s  the space spanned 
by V and y, then V* i s  closed. 

To prove this, suppose z is a limit point of V*. Then 

where xn s V, and A, are scalars. Since convergent sequences in metric 
spaces are bounded, there exists an 7 < 00 such that Ilx, + Anyll < q for 
n = 1 2, 3 , . . . If it were true that IX,I -+ .o, we should have 
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so that - y e V, since V is closed. But y # V. Hence {A,) has a Cauchy 
subsequence { A n i )  converging to some A, and so {x,,), being a difference 
of two Cauchy sequences, is itself a Cauchy sequence in H and converges 
to some x e V. Then z = x + Xy. This proves that V* contains all its 
limit points. 

We now return to our problem. Put 

Then if $0, given by (2)) is the minimizing element, we must have 

(x - Xo, v;) = 0 

for i = 1, . . . , k, which leads to a set of k linear equations in the 
unknowns cr? . . . , c k :  

We know from Theorem 4.11 that xo exists and is unique. Hence the 
determinant of the aij is not 0, and the cj can be computed from (4). 

Next, let 6 be the minimum value of (1). Since (x - so, ui )  = 0, we 
have (x - x0, $0) = 0; hence 

6' = (s - xo, x - XO) = (c, x - xo) = (x, x - c ju j ) ,  
j= 1 

so that 

This solves our problem, in terms of the quantities (3). 
Let us now turn to a special case: Replace cl ,  , . . , v k  by an  ortho- 

normal set ul, . . . , u k .  Then aij = 1 if i = j, Gj = 0 if i # j ,  hence (4) 
gives ci  = bi, and (5) becomes 

We may summarize as follows: 

4.16 Theorem Let ul, . . . , uk be an orthonormal set in H ,  u.nd let 
x & H. Thm 
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for a12 scalars XI, . . . , Xk. Equality holds in (1) i f  and only if Xi = (x,ui) 
for 1 5 j 5 k. The vector 

i s  the orthogonal projection of x into the subspace [ul, . . . , uk], and i f  6 
is the distance from x to this subspace, then 

Corollary (Besse19s Inequality) If ( U ,  : a E A ) is any orthonormal set in 
H ,  i f  x a H, and if $(a) = (x,u,) , then 

This corollary calls for eome explanation and comment. The set A 
is any index set, possibly even uncountable, and not ordered in any way. 
Under those conditions, what does the sum 011 the left side of (4) signify? 
We define i t  as follows: If 0 5 ~ ( a )  5 co for each a a A, the symbol 

denotes the supremum of the set of all finite sums rg(cul) + v(arz) + - 
+ cp(ak), where a ~ ,  . . . , ak are distinct members of A. With this agree- 
ment, it is clear that (4) follows from (3). 

A moment's consideration will show that the sum (5) i s  precisely the 
Lebesgue integral of rg relative to the counting measure on A. Let CP(A) be 
the L2-space relative to this counting measure. Then (4) asserts that 
a a P(A) and that J I I ( \ a  I 11x11. 

One immediate consequence of (4) should be mentioned explicitly: 

For any x a H and any orthonormal set (u,) in H, the set oj aZZ a such that 
$(a) # 0 is at most countable. 

Let F be the mapping which assigns to each x a H the function I on A. 
For each a a A, x -, (x,~,) is a linear functional. Hence F is a linear 
transformation of H into @(A) (see Definition 2.1). Alm, F does not 
increase distances, since 119 - $ 1 1 2  5 l\x - yI1. In particular, F is 
continuous. 

We shall now see that the completeness of H implies that F maps H 
onto P(A) and that under certain conditions on (u , )  , F is actually an 
isometry, i.e., that IIIlln = llxlf for 811 x a H. Then, of course, F will be 
one-to-one. 
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4.17 The Riesz-Fiseher Theorem Let { ua: at a A ) bc a% orthomrmd set 
in H. Suppose 9 a P(A). Then p a 2 for some x a H .  

PROOF For n = 1, 2, 3, . . . , let A, = {a t :  (q(at)) > l/n). Each 
A,  is a finite set. (In fact, one checks easily that An h a  a t  most 
nellplli elements.) Put 

Then 9, = q . x ~ , ,  so that $,(a) -+ q(a) for every a a A, and 
l p  - $,1' 5 l q 1 2 .  Hence, by an elbmentary case of the dominated 
convergence theorem, I! q - $* ( 1  2 -3 0. I t  follows that (2,) is a 
Cauchy sequence in P(A).  Since the sets A ,  are finite, Theorem 

4.14 shows that Ilxm - xmlI - 111, - fmI12. Thus ( x , )  is a Cauchy 
sequence in H ,  and since H is complete, there exists an x = lim x,  in 

vt-+ rn 

H .  For any a a A we then have 

$(a) = (x,u,) = lim ( x n , t ~ a )  = linl i , ,(a) = q(a), 
n-b a tL+ 00 

which completes the proof. 

4.18 Theorem Let (u,: a! e A ) be an orthonol-mal set in H .  Each of the 
following four conditions on {u,  j imp1 ies the other three: 

(a) {u,  ] is a maximal orthonormal set in H.  
(b) The set S of all $nit2 linear combinations of members of {u,)  is 

dense in H. 
(c) For wery x E H, we have llxlle = 2: l$(a)ie- 

USA 

(d)  If x a H an& y a H, then ( x , y )  = 2: $ ( a ) m  
QZA 

This last formula is known as Parseval's identity. Observe that 
E C2(A) and fi a C2 ( A ) ,  hence @ a &(A) ,  so that the summation in (d) is 

well defined. Of course, (c )  is the special case x = y of (d) .  Maximal 
orthonormal sets are frequently called complete orthonormal sets or ortho- 
normal bases. 

PROOF TO say that {u,)  is maximal means simply that no vector of 
H can be adjoined to {ua]  in such a way that the resulting set is still 
orthonormal. This happens precisely when there is no x # 0 in H 
which is orthogonal to every u,. 

We shaU prove that (a) --+ ( b )  4 (c) -+ (d)  -+ (a).  
Let M be the closure of S. Since S is a subspace, so is M (xn 4 z 

and y ,  -+ y implies x,  + y, 4 x + y ,  Ax, 4 Ax) ; and if S is not dense 
in H, then M # H, so that M L  contains a nonzero vector, by Theorem 
4.11. Thus (u,  ] is not maximal if S is not dense, and (a)  implies (b) .  
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Suppose (b)  holds. Fix x e H ,  e > 0. Since S is dense, there is a 
finite set u,,, . . . , Ua, such that some linear combination of these 
vectors has distance less than E from x. By Theorem 4.16, this 
approximation can only be improved if we take $(aj) for the coeffi- 
cient of uaj. Thus if 

we have llx - 211 < r ,  hence l\xl\ < llzll + r, and Theorem 4.14 gives 

(2) ( - 1 1  = i 2  + . . + is(ak)l" c 1 + ) 1 2 *  
&A 

Since r was arbitrary, (c) follows from (2) and the Bessel inequality. ' 

The equatiop in (c) can also be written in the form 

the inner product on the right being the one in the Hilbert space 
tZ(A), as in Example 4.5(b) .  Fix x E H, 9 e H .  If (c) holds, then 

for every scalar A ;  hence 

Take X = 1 and X = i. Then (5) shows that (x,y) and (&,$) have 
the same real and imaginary parts, hence are equal. Thus (c) 
implies (d). 

Finally, if (a) is false, there exists a u # 0 in H so that (u,u,) = 0 
for all a s A .  If x = y = u, then (x,y) = llullP # 0, but $(a) = 0 
for all a E A, hence (d) fails. Thus (d) impliw (a ) ,  and the proof is 
complete. 

4.19 Isomorphisms Speaking informally, two algebraic systems of the 
same nature are said to be isomorphic if there is a one-to-one mapping of 
one onto the other which preserves all relevant properties. For instance, 
we may ask whether two groups are isomorphic or whether two fields are 
isomorphic. Two vector spaces are isomorphic if there is a one-to-one , 
linear mapping of one onto the other. The linear mappings are the ones 
which preserve the relevant concepts in a vector space, namely, addition 
and scalar multiplication. 

I n  the same way, two Hilbert spaces H1 and H2 are isomorphic if there 
is a one-to-one linear mapping A of HI onto H z  which also preserves inner 
products: (Ax,Ay) = (x,y) for all x and y c Hi. Such a A is an isomorph- 
ism (or, more specifically, a Hilbe~t space isonzo~*phism) of H1 onto Hz. 
Using this terminology, Theorems 4.17 and 4.18 yield the following 
statement: 
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If {u,: e A is a maxinzal orthonormal set in a Hilbert space H, and if 
$(a) = (x,~,), then the mapping x -+ 9 is a Hilbert space isomorphism of 
H onto P(A). 

One can prove (we shall omit this) that t2(A) and C2(B) are isomorphic 
if and only if the sets A and B have the same cardinal number. But we 
shall prove that every nontrivial HiIbert space (this means that the 
space does not consist of 0 alone) is isomorphic to some t2(A), by proving 
that every such space contains a maximal orthonormal set (Theorem 
4.22). The proof will depend on a property of partially ordered sets 
which is equivalent to the axiom of choice. 

4.20 Partially Ordered Sets A set 8 is said to be partially ordered by a 
binary relation 5 if 

(a) a 5 b and b 5 c implies a 5 c. 
(b)  a 5 a for every a s 6. 
(c)  a 5 b and b 5 a implies a = b. 

A subset Q of a partially ordered set 6 is said to be totally ordered (or 
lznecirly ordered) if every pair a, b r Q satisfies either a 2 b or b 5 a. 

For example, every collection of subsets of a given set is partially 
ordered by the iriclusion relation C. 

To give a more specific example, let 6 be the collection of all open sub- 
sets of the plane, partially ordered by set inclusion, and let Q be the collec- 
tion of all open circular discs with center at the origin. Then Q C 6, Q 
is totally ordered by C, and Q is a muximd totally ordered subset of 6. 
This means that if any member of @ not in Q is adjoined to Q, the resulting 
collection of sets is no longer totally ordered by C. 

4.21 The Hausdorff Maxirnality Theorem Every nonempty partially 
ordered set contains a maximal totally ordered subset. 

This is a consequence of the axiom of choice and is, in fact, equivalent 
to it; another (very similar) form of it is known as Zorn's lemma. We 
give the proof in the Appendix. 

If now H is a nontrivial Hilbert space, then there exists a u E H with 
J)u(J = 1, so that there is a nonempty orthonormal set in H. The existence 
of a maximal orthonormal set is therefore a consequence of the following 
theorem : 

4.22 Theorem Every orthonormal set B in a Hilbert space H i s  contained 
in a maximal orthonormal set in H .  

P ~ O O F  Let 6 be the class of all orthonormal sets in H which contain 
the given set B. Partially order 6 by set inclusion. Since B s 6, 
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@ # e f  . Hence 6 contains a maximal totally ordered class Q. Let 
S be the union of all members of Q. It is clew that B C S. We 
claim that S is a maximal orthononnal set: 

If ul and un E S, then u1 E A1 and u2 E A2 for some A1 and An E Q. 
Since is totally ordered, A1 C A2 (or A2 C Al), SO that ul E Ag and 
uz s A2. Since Ae is orthonormal, (ul,u2) = 0 if ul # u2, (ul,u2) = 1 
if ul = u2. Thus S is an orthonormal set. 

Suppose S is not maximal. Then S is a proper subset of an ortho- 
normal set S*. Clearly, S* # Q, and S* contains every member of Q. 
Hence we may adjoin S* to $2 and still have a total order. This 
contradicts the maximality of Q. 

Trigonometric Series 

4.23 Definitions Let T be the unit circle in the complex plane, i.e., the 
set of all complex numbers of absolute value 1. If F is any function on 
T and i f f  is defined on R1 by 

then f is a periodic function of period 2a. This means that f (t + %) = f (t) 
for all real t. Conversely, if f is a function on R1, with period 2x, then 
there is a function F on T such that (1) holds. Thus we may identify 
functions on T with %-periodic functions on R1; and, for simplicity of 
notation, we shall sometimes write f (t) rather than f (e"), even if we think 
of f as being defined on T. 

With these conventions in mind, we define Lp(T), for 1 I'p < a, to 
be the class of all complex, Lebesgue measurable, 2a-periodic functions 
on R1 for which the norm 

is finite. 
In  other words, we are looking a t  LP(P), where p is Lebesgue measure 

on [0,2a) (or on T), divided by 2a. Lm(T) will be the class of all 2a- 
periodic members of Lm(R1), with the essential supremum norm, and C(T) 
consists of all continuous complex functions on T (or, equivalently, of all 
continuous, complex, 2~-periodic functions on R1), with norm 

The factor I/(%) in (2) simplifies the formalism we are about to 
develop. For instance, the Lp-norm of the constant function 1 is 1. 

A trigonometric polynomial is a finite sum of the form 
N 

(4) f(t) = a. + 2 (an cos nt + bn sin nt) (t E R1) 
n-1 
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where ao, al ,  . . . , a~ and bl, . . . , b~ are complex numbers. On 
account of the Euler identities, (4) can also be written in the form 

which is more convenient for most purposes. It is clear that every 
trigonometric polynomial has period 2a. 

We shall denote the set of all integers (positive, zero, and negative) by 
2, and put 

If we define the inner product in L2(T)  by 

[note that this is in agreement with (2)], an easy computation shows that 

Thus {u,: n E 2) is an orthonormal set in L2(T), usuaI1y called the trigono- 
metric system. We shall now prove that this system is maximal, and shall 
then derive concrete versions of the abstract theorems previously obtained 
in the Hilbert space context. 

4.24 The Completeness of the Trigonometric System Theorem 4.18 
shows that the maximality (or completeness) of the trigonometric system 
will be proved as soon as we can show that the set of all trigonometric 
polynomials is dense in L2(T). Since C(T) is dense in L2(T), by Theorem 
3.14 (note that T is compact), it suffices to show that to every f a C(T) 
and to every c > 0 there is a trigonometric polynomial P such that 
1 f - P < c Since 1191\2 < Ilgllm for every g a C(T), the estimate 
\if - P1I2 < E will follow from I I f  - PI\, < t, and it is this estimate which 
we shall prove. 

Suppose we had trigonometric polynomials Q1, Q2, Q3, . . . , with the 
following properties: 

(4 Qk(t) 2 0 for t a R1. 

lim qk(6) = 0 
k + m  

for every 6 > 0. 



90 Real and complex analysis 

Another way of stating (c) is to say that Q k ( t )  4 0 uniformly on 
[-a,-S] u [Sva], for every S > 0. 

To each f E C(T) we associate the functions Pk defined by 

If we replace s by -s  and then by s - t, the periodicity off and Qk shows 
that the value of the integral is not affected. Hence 

Since each Qk is a trigonometric polynomial, Qk is of the forn~ 

and if we replace t by t - s in (3) a.nd substitute the result in (2), we see 
that each Pk is a trigonolnetric polynomial, 

Let r > 0 be given. Since f is uniformly continuous on T, there exists 
a 6 > 0 such that (f(t) - f(s)l < e whenever ( t  - s( < S. By (b), we 
have 

/. and (a) implies, for all t, that 

1 1 - f I 5 - If0 - s) - f(l)lQk(s) ds = A1 + A*, 2lr -. 
where A1 is the integral over [- S,S] and A 2  is the integral over 

In A1, the integrand is less than ~Qk(s), SO A1 < c, by .(b). Tn A2, we have 
Qk(s) I d S ) ,  hence 

for sufficiently large k, by (c). Since these estimates are independent of 
t ,  we have proved that 

lim 1 1  f - Pkl loo  = 0, 
k+ oo 

It remains to construct the Qk. This can be done in many ways. 
Here is a simple one. Put 

I + cos t 
U.(l) = , ( y, 
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where ck is chosen so that '(b) holds. Since (a) is clear, we only need to 
show (c). Since Qk is even, (b) shows that 

Since &k is decreasing on [O,aj, it follows that 

This implies (c), since I + cos 8 < 2 if 0 < 8 2 a. 
We have proved the following important result: 

4.25 Theorem If f z C(T) and 6 > 0, there is a trigonometl-ic polynoma'al 
P d U u t l  

If(t1 - P(0l < , 
for eve y red t. 

A more precise result was proved by Fej6r (1904) : The arithmetic means 
of the partial sums of the Fourier series of any f z C(T) converge uniformly 
to f. For a proof (quite similar to the above) see Theorem 8.15 of [26j. 

4.26 Fourier Series For any f E L1 (T), we define the Fourier coeficients 
off by the formula 

where, we recall, Z is the set of all integers. We thus associate with each 
f E L1(T) a function f on Z. The Fourier series of f is 

and its partial sums are 

N 

(3) SN (t) = Z f(n)eint ( N  = 0, I ,  2, , . .). 
-N 

Since L2(T) C LYT), (I) can be applied to every f e L2(T). Comparing 
the definitions made in Secs. 4.23 and 4.13, we can now restate Theorems 
4.17 and 4.18 in concrete terms: 

The Riesz-Fischer theorf2m asserts that if {GI is a sequence of complex 
numbers such that 
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then there exists an f a L2(T) such that 

The Parseval theorem asserts that 

whenever f E L2(T) and g E L2(T) ; the series on the left of (6) converges 
absolutely; and if $ 1 ~  is as in (3), then 

since a special case of (6) yields 

Note that (7) says that every f E L2(T) is the L2-limit of the partial 
sums of its Fourier series; i.e., the Fourier series off converges to f ,  in the 
Lrsense. Pointwise convergence presents a more delicate problem, as 
we shall see in Chap. 5. 

The Riesz-Fischer theorem and the Parseval theorem may be sum- 
marized by saying that the mapping f -+ f is a Hilbert space isomorphism ,. 
of L2(T) onto .P(Z). 

The theory of Fourier series in other function spaces, for instance in 
L1(T),  is much more difficult than in L2(T), and we shall touch only a few 
aspects of it. 

Observe that the crucial ingredient in the proof of the Riesz-Fischer 
theorem is the fact that La is complete. This is so well recognized that 
the name "Riesz-Fischer theorem" is sometimes given to the theorem 
which asserts the completeness of L2, or even of any Lp. 

Exercises 

In  this set of exercises, H always denotes a Hilbert space. 

1 If M is a closed subspace of H, prove that M = (M1)". Is there 
a similar true statement for subspaces fii which are not necessarily 
closed? 

2 For n = 1, 2, 3, . . . , let { v , )  be an independent set of vectors 
in H. Develop a constructive process which generates an ortho- 
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normal set f %), such that u, is a linear combination of vl ,  . . . I 

u,. Note that this leads to a proof of the existence of a maximal 
orthonormal set in separable Hilbert spaces which makes no appeal 
to the Hausdorff maximality principle. ( A  space is separa bk if it 
contains a countable dense subset.) 

3 Show that Lp(T)  is separable i l l  _< p < m, but that Lm(T) is not 
separable. 

4 Show that H is separable if and only if H cuntains a maximal 
orthonormal system which is at most countable. 

5 If M = fx: Lx = O j  , where L is a continuous linear functional on 
H ,  prove that MI is a vector space of dimension 1 (unless M = H). 

6 Let {u,] ( n  = 1 ,  2 ,  3, . . .) be an orthonormal set in H .  Show 
that this gives an example of a closed and bounded set which is not 
compact. Let Q be the set of all X E  H of the form 

1 
z = 1 au., where 1c.l 5 -- 

1 
n 

Prove that Q is compact. ( Q  is called the Hilbert cube.) 
More generally, let { 6 ,  j be a sequence of positive numbers, and 

let S be the set of all x E H of the form 

w 

x - 2 en%, where ]cnl I 6,. 
1 

(9 

Prove that S is compact if and only if 2 an2 < 00. 
1 

Prove that H is not locaIly compact. 
7 Suppose (a , )  is a sequence of positive numbers such that 2a,bn < oo 

whenever b ,  2 0 and 2bn2 < a. Prove that 2an2 < GO. 

8 If H I  and H z  are two Hilbert spaces, prove that one of them is 
isomorphic to a subspace of the other. (Note that every closed 
subspace of a Hilbert space is a Hilbert space.) 

9 If A C [0,2?r] and A is measurable, prove that 

lim in cos nx dz = lim sin nx dx  = 0. 
n+ m n-3 00 /A 

10 Let nl < nt < n8 < . be positive integers, and let E be the 
set of all z e [0,2u] a t  which (sin nkx j converges. Prove that 
m(E) = 0. Hint: 2 sin2 o = 1 - cos 2a, so sin n i x  --+ -t- 1 / 4 2  
a.e. on E, by Exercise 9. 

I1 Prove that the identity 
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is valid in every inner product space, aud show that it proves the 
implication (c) -+ (d) of Theorem 4.18. 

12 The constants c k  in Sec. 4.24 were shown to be such that k-lck is 
bounded. Estimate the relevant integral more precisely and show 
that 

0 < lim k-4 ck < a. 
b o o  

13 Suppose f is a continuous function on R1, with period 1. Prove 
that 

for every irrational real number a. Hint:  Do it first for 

f ( t )  = exp (2?rikt), 

k = 0, + I ,  +2, . . . . 
14 Compute 

and find 

where Q is subject to the restrictions 

15 Compute 

min /om lz" a - bx - a212e-sdx. 
a,b,c 

State and solve the corresponding maximum problem, as in Exer- 
cise 14. 

16 If xo e H and 2Cf is a closed linear subspace of H ,  prove that 

min { iix - xoJJ :x E M ] = max { ((x0,y)l: y e M I ,  I(y(\ = 1 ) .  

17 Show that there is a continuous one-to-one mapping y of [O,l] into 
H such that y(b) - y(a) is orthogonal to ~ ( d )  - ~ ( c )  whenever 
0 5 a 5 b 5 c 5 d 5 1. (y may be called a "curve with 
orthogonal increments.") Hint: Take H = L2, and consider 
characteristic functions of certain subsets of [,0,1]. 

18 Give a direct proof of Theorein 4.16, i.e., one which does not 
depend on the more general considerations of Sec. 4.15. 


