A

Elementary Hilbert
Space Theory

Inner Products and Linear Functionals

4.1 Definition A complex vector space H is called an inner product
space (or unitary space) if to each ordered pair of vectors z and ye H
there is associated a complex number (z,y), the so-called “inner product”

(or “scalar product’’) of x and y, such that the following rules hold:

(@) (v,2) = (z,5). (The bar denotes complex conjugation.)
() (x+y,2) = (x2) + (y2) if 2, y,and ze H.

(¢) (ax,y) = alr,y) if x and y e H and « is a secalar.

(d) (x,) > O forall ze H.

(e) (z,x) = Oonlyif z = 0.

Let us list some immediate consequences of these axioms:

(c) implies that (0,y) = 0 for all y & H.

() and (c) may be combined into the statement: For every y € H, the

mapping r— (x,y) 1s a linear functional on H.
(a) and (c) show that (z,ay) = a&(z,y).
(¢) and (b) imply the second distributive law:

B z+y) = (@20 + ().

By (d), we may define ||z|, the norm of the vector z &€ H, to be

the nonnegative square root of (z,2). Thus

) 2] = (z,2).
4.2 The Schwarz Inequality The properties 4.1(a) to (d) *mply that
[,y)] < llzfl [yl

Jorallzand ye H.
9
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PROOF Put A = ||z]?, B = |(z,y)|, and C = |ly||2. There is a com-
plex number « such that |aj = 1 and a(y,z) = B. For any real r,
we then have

(1) (x —ray,x — ray) = (.’L‘,.'E) - ra(y,x) - r&(x,y) + rz(y;y)'
The expression on the left is real and not negative. Hence

(2) A—2Br+4+Cr2 >0

for every real . If C = 0, we must have B = 0, otherwise (2) is
false for large positive r. If C > 0, take r = B/C in (2), and obtain
B? < AC.

4.3 The Triangle Inequality For x and y ¢ H, we have

lz + yll < [l + llwll.
PROOF By the Schwarz inequality,

lz+4l* = @+ 92+ = @D+ @9 + G2 + @)
< [l=* + 2ll=ll N1yl + fyll* = =l + Nyi)*.
4.4 Definition It follows from the triangle inequality that

ey le =2 <z -yl +ly—2] (z,9 2z2H).
If we define the distance between x and y to be [z — y||, all the axioms for
a metric space are satisfied; here, for the first time, we use part (e) of
Definition 4.1.

Thus H is now a metric space. If this metric space is complele, i.e.,
if every Cauchy sequence converges in H, then H is called a Hilbert space.

Throughout the rest of this chapter, the letter H will denote a Hilbert
space,

4.5 Examples

(a) For any fixed n, the set C* of all n-tuples

T = (EIJ .. Eﬂ):
where £, . . ., £, are complex numbers, is a Hilbert space if
addition and sealar multiplication are defined componentwise; as

usual, and if

G = Y6 W= )

(b) If uis any positive measure, L?(u) is a Hilbert space, with inner
product

(f’g) = ]X 1§ du.
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©

The integrand on the right is in L'(x), by Theorem 3.8, so that
(f,g) is well defined. Note that

171 = G = { [ 1z au}’ = 10

The completeness of L2*(u) (Theorem 3.11) shows that L2(u) is
indeed a Hilbert space. [We recall that L#(x) should be regarded
as a space of equivalence classes of functions; compare the dis-
cussion in See, 3.10.]

For H = L?(u), the inequalities 4.2 and 4.3 turn out to be
special cases of the inequalities of Holder and Minkowski.

Note that Example (a) is a special case of (b). What is the
measure in {a)?
The vector space of all continuous complex functions on [0,1] is
an inner product space if

1 —
G = [ 569 de
but is not a Hilbert space.

4.6 Theorem For any fixred y € H, the mappings

z— (xsy); T — (y:x)y z— ”x”

are coniinuous functions on H.

PRoOOF The Schwarz inequality implies that

I(zl,y) - (x%y)l = I(xl — Ty y)l < ”.CC]_ — sz ”y”)

which proves that z — (z,y) is, in fact, uniformly continuous, and
the same is true for 2 — (y,z). The triangle inequality |z,|| <
lxs — 22l + ||2:l yields

lzall = [lzal] < [lz2 — 24ll,

and if we interchange z, and z, we see that

lzaf} = fl2afl] < [lox — 2a]

for all z; and z; € H. Thus & — ||z| is also uniformly continuous.

4.7 Subspaces A subset M of a vector space V is called a subspace of V
if M is itself a vector space, relative to the addition and scalar multiplica-
tion which are defined in V. A necessary and sufficient econdition for a
set M C V to be a subspace is that + + ye M and ox e M whenever
zand y&e M and « is a scalar.

In the vector space context, the word “‘subspace’” will always have this
meaning. Sometimes, for emphasis, we may use the term ‘“linear sub-
space’” in place of subspace.
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For example, if V is the vector space of all complex functions on a set S,
the set of all bounded complex functions on S is a subspace of V, but the
set of all f & V with |f(z)| < 1 for all & S is not. The real vector space
R?® has the following subspaces, and no others: (a) R?, (b) all planes
through the origin 0, {¢) all straight lines through 0, and (d) {0}.

A closed subspace M of H is a subspace which is a closed set relative to
the topology induced by the metric of H.

4.8 Convex Sets A set E in a vector space V is said to be convex if it has

the following geometric property: Wheneverze E,ye E,and 0 <t < 1,
the point

2, =

z 1
(3 A Sl

— Dz + ty

also lies in E. As ¢ runs from 0 to 1, one may visualize z, as describing a
straight line segment in V, from z to y. Convexity requires that E con-
tain the segments between any two of its points.

It is clear that every subspace of V is convex.

Also, if E is convex, so is each of its translates

E+4z={y+2z:yeE}

4.9 Orthogonality If (z,5) = O for some r and y ¢ H, we say that z is
orthogonal to y, and sometimes write z L y. Since (z,y) = 0 implies
(y,x) = 0, the relation 1 is symmetric.

Let x* denote the set of all y ¢ H which are orthogonal to z; and if M
is a subspace of H, let M* be the set of all y € H which are orthogonal to
every re M.

Note that z* is a subspace of H, since z L y and z L y' implies
z L{(y+¥) and z L ay. Also, x* is preciseiy the set of points where
the continuous funection y — (2,y) is 0. Hence z* is a closed subspace of
H. Since

ML= 0 24
zeM

M* is an intersection of closed subspaces, and it follows that M+ is a
closed subspace of H.

A TN ThL - F'nomnt mnm ) T
Feiv R AICUTTIIL uvo:y‘ wuwempty, Czesed, conver sel E ma

contains a unique element of smallest norm.

2ibert &
AL VYV V

In other words, there is one and only one r, ¢ E such that |jz.f| < ||z
for every z ¢ E.

PROOF An easy computation, using only the properties listed in
Definition 4.1, establishes the identity

® =+ yl?+ llz — gl = 2[=]* + 2[lyl* (zand yeH).
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This is known as the parallelogram law: 1f we interpret ||z|| to be the
length of the vector z, (1) says that the sum of the squares of the
diagonals of a parallelogram is equal to the sum of the squares of its
sides, a familiar proposition in plane geometry.

Let & = inf {lz]: ze E}. For any = and ye E, we apply (1) to
4z and }y and obtain

) Hie — ylI* = 3l=l* + #vli* -

r+yl?
5 .

Since E 1s convex, (z + y)/2¢ E. Hence
@)z — yl* < 2[2l + 2[lyl* — 48*  (zand ye E).

If also ||z|} = [lyll = 8, then (3) implies z = y, and we have proved
the uniqueness assertion of the theorem.

The definition of 8 shows that there is a sequence {y,} in E so that
llyall — 6 as n — «. Replace x and y in (3) by y. and y.. Then,
as n— « and m — «, the right side of (3) will tend to 0. This
shows that {y.} is a Cauchy sequence. Since H is complete, there
exists an zoe H so that y, — =ze, i€, [[ya — 2o/ = 0, as > o,
Since y, ¢ £ and F is closed, zo & E. Since the norm is a continuous
function on H (Theorem 4.6), it follows that

4,11 Theorem Let M be a closed subspace of H. There exists a unique
pair of mappings P and Q such that P maps H into M, Q maps H into M4,
and

(1) r =Pz + Qr
forall xe H. These mappings have the following further properties:

2) IfzeM,then Px =2, Qr = 0;if e M+ then Pz = 0, Qz = z.

(3) - e — Pz|| = inf {|lz — yll:ye M} i ze H.
4) lzl? = ||Pzl? + [Qx]*
(5) P and @ are linear mappings.

Corollary If M £ H, there exists a ye H, y # 0, such that y 1L M.
P and @ are called the orthogonal projections of H onto M and M*.

PROOF For any re H, the set 2 + M = {x + y: ye M} is closed
and convex. Define Qx to be the unique element of smallest norm in
x <+ M, this exists, by Theorem 4.10. Define Pz = 2 — Qx. Then
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(1) holds. Since Qrex + M, it is clear that Px ¢ M. Thus P maps
H into M.

We next have to show that (Qz,y) = 0 for all ye M. Assume
llyll = 1, without loss of generality, and put z = @». The minimal
property of @z shows that

(Z,Z) = "zHE < ”Z - ay“2 = (Z —ay, & — ay}
for every scalar o This simplifies to
0 < —a(y2) — &(zy) + o

With a = (z,3), this gives 0 < —|[(z,9)|%, so that (z,y) = 0. Thus
Q maps H into M+,
Now if £ = xo + x1, with 202 M, x, e M+, then

Zo — Pr = Qx — z,.

Since o — PreM,Qr — e M*, and M n M+ = {0} [an immediate
consequence of the fact that (z,2) = 0 implies £ = 0], we have
9 = Pz, x, = Qz, which proves the uniqueness assertion.

The linearity of P and @ is proved similarly: applying (1) to z,
to y, and to ax + By, we obtain

P(ax + By) — aPzr — BPy = oQz + 8Qy — Q(az + By).

The left side is in M, the right side in #/*; hence both are 0, so P
and @ are linear.

Property (2) follows from (1); (3) was ‘used to define P; and (4)
follows from (1), since (Pz,Qx) = 0. To prove the corollary, take
zeH, z¢ M, and puty = Qz; since x # Pz, y # 0,

We have already observed that £ — (z,y) is, for each y € H, a continu-
ous linear functional on H. 1t is a very important fact that all continuous
linear functionals on H are of this type.

4.12 Theorem If L is a continuous linear functional on H, then there is a
unique y € H such that

(1)

Lz = (zy) (zeH).
PROOF If Lz = O for all z, take y = 0. Otherwise, define
2) M = |z: Lr = 0}.

The linearity of L shows that M is a subspace. The continuity of
L shows that M is closed. Since Lz # 0 for some z & H, Theorem
4.11 shows that M+ does not consist of 0 alone.



Elementary Hilbert space theory 8i

It is clear that we must look for our desired y in M+, and that we
must have Ly = (y,y).
Choose ze M+, 2= 0. Then z¢ M, hence Lz = 0. Put y = az,

where & = (Lz)/(2,2). Then ye M*, Ly = (y,9), and y %2 0. For
any z & H, put

Lz Lz
3 "= — d o =24
@) TET T aw Y an * W Y

Then Lz’ = 0, hence 2’ £ M, hence (z’,y) = 0, hence
(4) (zy) = (@) = Lz,

which gives the desired representation of Lzx.

The uniqueness of y 18 easily proved, for if (z,y) = (x,y’) for all
zeH, set z =y — ¢/; then (z,2) = 0 for all x¢ H; in particular,
(2,2) = 0, hence z = 0.

Orthonormal Sets

4.13 Definitions If V is a vector space, if 21, . .., &V, and if
€, . . ., Care scalars, theneyry + * -+ + cuxy is called a linear combe-
nation of 21, . . . , z:. The set {z,, . . ., z:} is called independent if
citr+ * - + cere = Oimpliesthate; = - - - =¢,=0. AsetSCV

is independent if every finite subset of S is independent. The set [S] of
all linear combinations of all finite subsets of S (also called the set of all
fintle linear combinations of members of S) is clearly a veetor space; [S]
is the smallest subspace of V which contains S; [S] is called the span of S,
or the space spanned by S.

A set of vectors u,. in a Hilbert space H, where « runs through some
index set A4, is called orthonormal if it satisfies the orthogonality relations
(tgug) = 0 forall @ # 8, ae A,and 8¢ A, and if it is normalized so that

l|uall = 1 for each ae A. In other words, {u,} is orthonormal provided
that

@ o) = | e Zy

If {uq: a€ A} is orthonormal, we associate with each z ¢ H a complex
function £ on the index set 4, defined by

2 #a) = (zr,u.) {(ae A).

One sometimes calls the numbers £(«) the Fourier coefficients of z, relative
to the set {u.}.
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k
4.14 Theorem If u,, . . . , ux 8 an orthonormal set, and if x = E Calln,
1

then

(1) e = (Zyus), forl<n<k,
%

2 ll||? = ;lcniz-

PROOF Apply the relations 4.13(1).
Corollary Every orthonormal set is independent.

PROOF This follows from (2).

4.15 An Approximation Problem Let vy, ..., v, be a set of inde-
pendent vectors in H, and suppose z&¢ H. The problem is to find a
method of computing the mintmum value of

k
@ Iz = % enll

J=1
where ¢1, . . . , ¢ range over all scalars, and o find the corresponding values

of ¢i, . . . , Ck

Let M be the spanof vy, . . . , 2. If we knew that M is closed, we
could apply Theorem 4.11 and deduce the existence of a unique mini-
mizing element z,.= Pz, where

k
2) zo = 3 &,
i=1

which also has the property that x — zoe M. These facts could then
be used to obtain information about the coefficients ¢i, . . . , & in (2).

Since M is the span of a finite set of vectors, it may seem obvious that M
is closed. One may prove it by induction, observing that {0} is certainly
closed and proceeding with the aid of the following lemma:

If V is a closed subspace of H,if ye H,y ¢ V, and V'™* is the space spanned
by V and y, then V* s closed.

To
- L

2 = Iim (xn + 7\»?/),

n-— 0

where z, £ V, and A, are scalars. Since convergent sequences in metric
spaces are bounded, there exists an 3 < « such that ||z, 4+ Ayl < g for
n=123,.... Ifit were true that [\,] = «, we should have

- K
Aa=2a + yil < T 0
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so that —y & V', since Visclosed. But y ¢ V. Hence {)\.} has a Cauchy
subsequence {\,,} converging to some A, and so {z,}, being a difference
of two Cauchy sequences, is itself a Cauchy sequence in H and converges
tosomeze V. Thenz = x -+ Ay. This proves that V* contains all its
limit points.

We now return to our problem. Put

(3) Ay = (v,-,v.-), b; = (x,vi)'
Then if zo, given by (2), is the minimizing element, we must have
(x — 2o, 05) =0
for + =1, ..., k, which leads to a set of k linear equations in the
unknowns ¢y, . . . , Ck:

) Y g =b  (1<i<k).

We know from Theorem 4.11 that z, exists and is unique. Hence the
determinant of the a,; is not 0, and the ¢; can be computed from (4}.

Next, let & be the minimum value of (1). Since (x — z, v;) = 0, we
have (x — xo, o) = 0; hence

= (—zoz—2)= (23 —2) = (32— Y e,
i=1

so that
k
(5) = lzll* — 3 &b
i=1
This solves our problem, in terms of the quantities (3).
Let us now turn to a special case: Replace v,, . . . , vx by an ortho-
normal set %y, . . . ,%. Thenay = 117 = j, a; = 0if 7 > 7, hence (4)

gives ¢; = b;, and (5) becomes

k
/0N ag 1 e AT
6) 62 = |lzf|2 — ), |bii%
i=1
We may summarize as follows:
4,16 Theorem Let u,, ..., u: be an orthonormal set in H, and lel

ze H. Then

k k
o 2= 2, @] <l = % w]
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for all scalars N1, . . . , M. Egquality holds in (1) if and only if \; = (z,u;)
for 1 <7 < k. Thevector
k
@) Y (@ uu
i=1

18 the orthogonal projection of t into the subspace [u1, . . . , w], and if &
18 the distance from x to this subspace, then

k

3 D, l@uw)® = [lz]|* — .

@ )JA [#(a)]2 < |12,

This corollary calls for some explanation and comment. The set A
is any index set, possibly even uncountable, and not ordered in any way.
Under those conditions, what does the sum on the left side of (4) signify?
We define it as follows: If 0 < ¢(a) < = for each a & A, the symbol
&) )

Ly ¥
atd

(o
A St

denotes the supremum of the set of all finite sums ¢{a1) + ¢(as) + -
+ ¢(ai), where oy, . . . , ay are distinet members of A. With this agree-
ment, it is clear that (4) follows from (3).

A moment’s consideration will show that the sum (5) ds precisely the
Lebesgue integral of ¢ relative to the counting measure on A. Let £2(A) be
the L?-space relative to this counting measure. Then (4) asserts that
£¢& £2(A) and that ||£l]l; < ||zl

One immediate consequence of (4) should be mentioned explicitly:

For any x € H and any orthonormal set {us} in H, the set of all a such that
£(a) # 0 18 af most countable.

Let F be the mapping which assigns to each z ¢ H the function £ on A.
For each ae A, x — (z,u.) is a linear functional. Hence F is a linear
transformation of H into £2(A4) (see Definition 2.1). Also, F does not
increase distances, since ||# — §ll: <z — yll. In particular, F is
continuous,

We shall now see that the completeness of H implies that F maps H
onto £2(A) and that under certain conditions on {u.}, F is actually an
isometry, i.e., that |£]]. = ||z|| for all ze H. Then, of course, F will be
one-to-one,
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4.17 The Riesz-Fiseher Theorem Letl {u,’ ae A} be an orthonormal set
w H. Suppose o€ {2(A). Then ¢ = £ for some z ¢ H.

PrRooF Forn =1,2,3, ... ,let An = {a: |p(a)] > 1/n}. Each
A, is a finite set. (In fact, one checks easily that A, has at most
n?|¢|3 elements.) Put

(1) Zn= Y pld)ua (0 =1,2,3 ...
atdn

Then £, = ¢ Xa,, 50 that #£.(a) — ¢(a) for every aeAd, and
¢ — £a]® < |p|2. Hence, by an elementary case of the dominated
convergence theorem, |¢ — £/ — 0. It follows that {£.} is a
Cauchy sequence in £2(4). Since the sets A, are finite, Theorem
4.14 shows that |z, — za| = ||£s — £alle. Thus {z.} is & Cauchy
sequence in H, and since H is complete, there exists an 2z = lim z, in

ft— 0

H. For any at A we then have

£(a) = (X,ue) = lim (Zs,u.) = lim £.(a) = ¢(a),

h—r %

which completes the proof.

4.18 Theorem Lel {u,: € A} be an orthonormal sef in H. Each of the
following four conditions on {u.} implies the other three:

(@) {u.} 7s @ maximal orthonormal set in H.

(b) The set 8 of all finite linear combinations of members of {u.} ts
dense in H.

(¢c) For every x € H, we have ||z||* = EA |£(a)i2.

@) Ifze H and y e H, then (z,y) = EA.‘t(a)m

This last formula is known as Parseval's identity. Observe that
£¢ £2(A) and § & £2(4), hence £7 € £1(A), so that the summation in (d) is
well defined. Of course, (¢) is the special case z = y of (d). Maximal

orthonormal sets are frequently called complete orthonormal sets or ortho-
normal bases.

PrRooF To say that {u.} is maximal means simply that no vector of
H can be adjoined to {u.} in such a way that the resulting set is still
orthonormal. This happens precisely when there is no z % 0 in H
which is orthogonal to every u,.

We shall prove that (a) — (b) — (¢) — (d) — (a).

Let M be the closure of S. Since 8 is a subspace, sois M (., —
and y, — y implies z. 4+ ya — = -+ ¥, Ao — Ar); and if S is not dense
in H,then M = H,so that M* contains a nonzero vector, by Theorem
4.11. Thus {u,} is not maximal if S is not dense, and (@) implies (b).
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Suppose (b) holds. Fixz2e H, ¢ > 0. Since S is dense, there is a
finite set uq, . . . , Ua, such that some linear combination of these
vectors has distance less than ¢ from z. By Theorem 4.16, this
approximation can only be improved if we take £(«;) for the coeffi-
cient of u,;. Thus if

(1) g = ﬁ(al)ua1 + R f(ak)u"!k:v

we have ||z — 2|} < ¢, hence ||z|l < ||z]] + ¢, and Theorem 4.14 gives

@) (=l — 9 < llzflz = [#(@)* + -+ - + [#(a)* < Y, 1E()]2

atA

Since ¢ was arbitrary, (¢) follows from (2) and the Bessel inequality.
Mha nrriadian 11 (A 2ot alon ha wreifdan 10 dha Lozesn
A 11C cqunmup HIL \b} Uil a1V L WILILLCIL 111 WE 1UL1IL

(3) (z,x) = (&,%),

the inner product on the right being the one in the Hilbert space
£2(A), as in Example 4.5(). Fixze H, ye H. 1If (¢) holds, then

(4) (z+ Ay, z+Ny) = @+ 0, 2+ D)
for every scalar \; hence
(5) AMz,y) + My,x) = XNE,9) + N\ 3,5).

Take A =1 and A = z. Then (5) shows that (z,y) and (£,4) have
the same real and imaginary parts, hence are equal. Thus (c¢)
implies (d).

Finally, if (a) is false, there exists a v = 0 in H so that (u,u.) = 0
for all ag A. If z = y = u, then (z,y) = ||ul|2 # 0, but £(a) = 0
for all a¢ A, hence (d) fails. Thus (d) implies (a), and the proof is
complete.

4.19 Isomorphisms Speaking informally, two algebraic systems of the
same nature are said to be isomorphie if there is a one-to-one mapping of
one onto the other which preserves all relevant properties. For instance,
we may ask whether two groups are isomorphic or whether two fields are
isomorphic. Two vector spaces are isomorphic if there is a one-to-one .
linear mapping of one onto the other. The linear mappings are the ones
which preserve the relevant concepts in a vector space, namely, addition
and scalar multiplication.

In the same way, two Hilbert spaces H; and H, are isomorphic if there
1s a one-to-one linear mapping A of H, onto H, which also preserves inner
products: (Ax,Ay) = (z,y) for all x and y € H,. Such a A is an isomorph-
ism (or, more specifically, a Hiulbert space isomorphism) of H, onto H,.
Using this terminology, Theorems 4.17 and 4.18 yield the following
statement:
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If {ua: e A} i3 a mazimal orthonormal sel in a Hilbert space H, and if
£(a) = (2,4), then the mapping x — £ is a Hilbert space isomorphism of
H onto £2(4A).

One can prove (we shall omit this) that £2(4) and {2(B) are isomorphic
if and only if the sets A and B have the same cardinal number, But we
shall prove that every nontrivial Hilbert space (this means that the
space does not consist of 0 alone) is isomorphic to some £2{4), by proving
that every such space contains a maximal orthonormal set (Theorem

4.22). The proof will depend on a property of partially ordered sets
which is equivalent to the axiom of choice.

A B ¥R ot B Aw ¥ ¥ O . | R T o Y- . Ao Lo a0 T Y L
4.40 raruially vuraerea oets A sy U I sall 10 DE pariidily oraereq Dy o

binary relation < if

(@) a <band b < cimplies a < c.
(b) @ < a for every ae ®.
(¢) a <band b < gimpliesa = b.

A subset @ of a partially ordered set @ is said to be totally ordered (or
linearly ordered) if every pair a, b & Q satisfies either a < b or b < a.

For example, every collection of subsets of a given set is partially
ordered by the inclusion relation C.

TILALIRAL Ay VAL SRAARASANAAL IRavuiv

To give a more specific example, let @ be the collection of all open sub-
sets of the plane, partially ordered by set inclusion, and let @ be the collec-
tion of all open circular dises with center at the origin. Then @ C @, @
is totally ordered by (, and 9 is a maximal totally ordered subset of @.
This means that if any member of ® not in € is adjoined to @, the resulting
collection of sets is no longer totally ordered by C.

4.21 The Hausdorff Maximality Theorem Every nomempty partially
ordered set contains a maximal totally ordered subset.

This is a consequence of the axiom of choice and is, in fact, equivalent
to it; another (very similar) form of it is known as Zorn’s lemma. We
give the proof in the Appendix.

If now H is a nontrivial Hilbert space, then there exists a « & H with
ll#l| = 1,sothat there is a nonempty orthonormal setin H. The existence

of a maximal orthonormal set is therefore a consequence of the following
theorem:

4.22 Theorem FEvery orthonormal set B in a Hilbert space H s contained
in @ maximal orthonormal set in H.

PROOF Let @ be the class of all orthonormal sets in H which contain
the given set B. Partially order ® by set inciusion. Since Be @,
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® = . Hence ® contains a maximal totally ordered class Q. Let
S be the union of all members of €. 1t is clear that B C S. We
claim that S is 2 maximal orthonormal set:

If 4, and us € S, then u, & A; and us & A, for some 4, and A, ¢ Q.
Since @ is totally ordered, A; C A; (or A; C Ay), =0 that v, £ A, and
use A, Since A, is orthonormal, (uy,us) = 0 if ur # ue, (ur,uz) =1
if w3 = u;. Thus 8 is an orthonormal set.

Suppose S is not maximal. Then 8§ is a proper subset of an ortho-
normal set 8*. Clearly, 8* ¢ Q, and S* contains every member of Q.
Hence we may adjoin 8* to € and still have a total order. This
contradicts the maximality of Q.

Trigonometric Series

4.23 Definitions Let T be the unit circle in the complex plane, i.e., the
set of all complex numbers of absolute value 1. If F is any function on
T and if f is defined on R! by

) f(®) = F(e¥),
then f is a periodic function of period 2x. This means that f({ 4 2x) = f(f)
for all real £. Conversely, if f is a function on R, with period 2, then
there is a function F on T such that (1) holds. Thus we may identify
functions on T with 2#-periodic funetions on R'; and, for simplicity of
notation, we shall sometimes write f(¢) rather than f(e*), even if we think
of f as being defined on 7.

With these conventions in mind, we define L*(T), for 1 <'p < =, to
be the class of all complex, Lebesgue measurable, 2#-periodic functions
on R! for which the norm

- 1/p
@ 11, = {o [, 0P o
is finite.

In other words, we are looking at L?(u), where u is Lebesgue measure
on [0,2r) (or on T}, divided by 2x. L=(T) will be the class of all 2=-
periodie members of L=(R?"), with the essential supremum norm, and C(T)
consists of all continuous complex functions on T (or, equivalently, of all

continuous, complex, 2r-periodie functions on R}, with norm
(3) Ifle = sup 7).

The factor 1/(2x) in (2) simplifies the formalism we are about to
develop. For instance, the L?-norm of the constant function 1 is 1.
A trigonomelric polynomial is a finite sum of the form
N

4) &) = ag + E (an cos nt + by, sin nf) (te RY)

n=l
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where ao, @1, . . ., @y and by, . . . , by are complex numbers, On
account of the Euler identities, (4) ean also be written in the form
N
(5) SO = Y caei
n=—N

which is more convenient for most purposes. It is clear that every
trigonometric polynomial has period 2.

We shall denote the set of all integers (positive, zero, and negative) by
Z, and put

(6) un(t) = eint ne2).
If we define the inner product in L%(T) by

1 ¢, —=
™ (o) = 5 |7 1090 at
[note that this is in agreement with (2)], an easy computation shows that
1 (= . 1 ifn=m
= T(n—m) —_ ’
) (U tm) o0 [-r ¢ ‘df { 0 if n # m.

Thus {u,.: n e Z} is an orthonormal set in L*(T), usually called the trigono-
melric system. We shall now prove that this system is maximal, and shall
then derive concrete versions of the abstract theorems previously obtained
in the Hilbert space context.

4.24 The Completeness of the Trigonometric System Theorem 4.18
shows that the maximality (or completeness) of the trigonometric system
will be proved as soon as we can show that the set of all trigonometric
polynomials is dense in L*(T). Since C(T) is dense in L*(T), by Theorem
3.14 (note that T is compact), it suffices to show that to every fe C(T)
and to every ¢ > 0 there is a trigonometric polynomial P such that
Ilf — Pl < e. Since |lgll: < |lglle for every ge C(T), the estimate

hf — Pll; < e will follow from ||f — P|l.. < ¢, and it is this estimate which
we shall prove.

Suppose we had trigonometric polynomials Q,, Q. @3, . . . , with the
following properties:
(a) Q.(t) > 0 for te R\
1 ¢~
® o [l @wa=1

(© If m(8) = sup {Qu(0): 6 < |t] < x}, then

lim 'r)k(a) =0
b
for every & > 0.
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Another way of stating (¢) is to say that Qi({) — 0 uniformly on
[—m,— 8] u[dr] for every § > 0.
To each f & C(T) we associate the functions P, defined by

M) P = o [ fG— Q) ds & =1,23, ...

If we replace s by —s and then by s — ¢, the periodicity of f and Qi shows
that the value of the integral is not affected. Hence

1 rr
@ P =g [ fOQE—9ds  (=1,2,3..0).
Since each @k is a trigonometric polynomial, @k is of the form

®) 00 = Y e,
n=—=Ns
and if we replace { by ¢t — s in (3) and substitute the result in (2), we see
that each Py is a trigonometric polynomial.
Let ¢ > 0 be given. Since f is uniformly continuous on 7', there exists
a & > 0 such that |f(f) — f(s)| < € whenever |t — 3| < 5. By (b), we
have

&

Pi(t) — f() = o [T 1 = &) — 108
and (a) implies, for all ¢, that

1 =
Pe() — SO S 5 [T 15 — &) —FOIQu(s) ds = As + 4
where A, is the integral over [—§,8] and A, is the integral over
[—wr,—8]u[5,x]

In A,, the integrand is less than «Q:(s),s0 A; < ¢, by'(b). In A4, wehave
Q:(8) < m:(d), hence

(4) Ay < 2)|flle - m(d) < e

for sufficiently large k, by (¢). Since these estimates are independent of
t, we have proved that

© Jim |15 = Pyl = 0

It remains to construct the Q: This can be done in many ways.
Here is a simple one. Put

(6) Qk(i) = Ck (}i%()s—f)ky
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where ¢; is chosen so that (b) holds. Since (@) is clear, we only need to
show (¢). Sinece @ is even, (b) shows that

_ e [ f1 4 cosit\ G {14 cos ity . _ 2¢x
1‘?[)( 2 )d‘>}o( 2 )S‘ntdt‘w(k+1)'

Since Q: is decreasing on [0,r], it follows that

M @0 <o <TEFDEEON o sy g,

2

This implies (¢), since 1 + cos 8 < 2if 0 < § < =.
We have proved the following important result:

4,25 Theorem If f& C(T) and ¢ > 0, there is a trigonometric polynomial
P such that

/@) — P())] <
for every real t.

A more precise result was proved by Fejér (1904) : The arithmetic means
of the partial sums of the Fourier series of any f € C(T') converge uniformly
to f. For a proof (quite similar to the above) see Theorem 8.15 of [26].

4.26 Fourier Series For any f& L}(T), we define the Fourier coefficients
of f by the formula

® oy = o [T j@endt  (ez),

where, we recall, Z is the set of all integers. We thus associate with each
fe LYT) & function f on Z. The Fourier series of f is

@) 3 fonyem,

and its pariial sums are
N

3) sn(f) = 2 f(n)em‘ (¥N=0,1,2,.. -
N

Since L*(T) C LYT), (1) canbe applied to everyf € L*(T). Comparing
the definitions made in Secs. 4.23 and 4.13, we can now restate Theorems
4.17 and 4.18 in concrete terms:

The Riesz-Fischer theorem asserts that if {¢,.} is a sequence of complex
numbers such that

4) Y el < oo,
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then there exists an f ¢ L2(T) such that

3) e = Ql; [[ jemd me2).

The Parseval theorem asserts that

© Y K = 5 [T 5050 d

nm —m

whenever f ¢ L*(T) and g ¢ L*(T); the series on the left of (6) converges
absolutely; and if sy is as in (3), then

(7) lim {|f — syll. = 0,

Nes w

since & special ease of (6) yields

(8) I/~ sxlii = 3 1fm)|*
In|>N

Note that (7) says that every f & L¥T) is the L2limit of the partial
sums of its Fourier series; i.e., the Fourier series of f converges to f, in the
L2-sense. Pointwise convergence presents a more delicate problem, as
we shall see in Chap. 5.

The Riesz-Fischer theorem and the Parseval theorem may be sum-
marized by saying that the mapping f — f is a Hilbert space isomorphism .
of L*(T) onto £2(Z).

The theory of Fourier series in other function spaces, for instance in
L(T), is much more difficult than in L2(7T), and we shall touch only a few
aspects of it.

Observe that the erucial ingredient in the proof of the Riesz-Fischer
theorem is the fact that L? is complete. This is so well recognized that
the name ‘‘Riesz-Fischer theorem’ is sometimes given to the theorem
which asserts the completeness of L2, or even of any L».

In this set of exercises, H always denotes a Hilbert space.

1 1f M is a closed subspace of H, prove that M = (M*)L. Is there
a similar true statement for subspaces M which are not necessarily
closed?

2 Forn=1,2,3,...,let {¢v.} be an independent set of vectors
in H. Develop a constructive proeess which generates an ortho-
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normal set {ua}, such that u, is a linear combination of vy, . . . ,
1., Note that this leads to a proof of the existence of a maximal
orthonormal set in separable Hilbert spaces which makes no appeal
to the Hausdorff maximality principle. (A space is separable if it
contains a countable dense subset.)

3 Show that L*(T) isseparableif 1 < p < «, but that L=(T) is not
separable.

4 Show that H is separable if and only if H contains a maximal
orthonormal system which is at most countable.

5 If M = {z: Lz = 0}, where L is a continuous linear functional on

H, prove that M! is a vector space of dimension 1 (unless M = H).
I 4 + far b f 9 0 3 be an nrtha + In H' Qhnaw

vV oAddu v lwn, \fe J-, H’ U, . L] o} CBE VL ULAVFLAVIL L1ILCUL VU 1AL M RAVE ¥Y

that this gives an example of a closed and bounded set which is not
compact. Let @ be the set of all z ¢ H of the form

=

o0
Tz = Z Calhn, Where [cn] <
1

Prove that @ is compact. (@ is called the Hilbert cube.)

More generally, let {8.} be a sequence of positive numbers, and
let S be the set of all z ¢ H of the form

T = Z Cnlin, Where |¢.| < 8,.
|}

Prove that S is compaect if and only if ;1 8a2 < o0,
1

Prove that H is not locally compact.

7 Suppose {a.} is a sequence of positive numbers such that Za.b, < «©
whenever b, > 0 and Zb,2 < «, Prove that Za.?2 < «.

8 If H, and H; are two Hilbert spaces, prove that one of them is
isomorphie to a subspace of the other. (Note that every closed
subspace of a Hilbert space is a Hilbert space.)

9 If A C[0,2x] and 4 is measurable, prove that

lim L cos nz dr = lim f sinnzdr =0
| —r ™ A
19 Let n1y < ny < m3 < - - - be positive integers, and let E be the

set of all r&[0,2x] at which {sinmn.r} converges. Prove that
m(E) = 0. Hini: 2 sin®a = 1 — cos 2a, 50 sinmez — +1/4/2
a.e. on E, by Exercise 9.

11 Prove that the identity

Hzy) =z +yl* — flz — yI? +dllz + wyll* — iz ~ ay]?
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is valid in every inner product space, and show that it proves the
implieation (¢) — (d) of Theorem 4.18.

12 The constants ¢, in See. 4.24 were shown to be such that k¢, is
bounded. Estimate the relevant integral more precisely and show
that

0 < lim ke < w,
k—

13 Suppose f is a continuous function on R?, with period 1. Prove
that
1 o 1
lim Zl Flne) = [) £() dt

N—w

for every irrational real number «. Hint: Do it first for

f(&) = exp (2xiki),

k=0, 1, £2, . ...
14 Compute
1 1 - — — 212
151;161 f_l 2 a— br — ex?|?dzx

and find
1
max f_ . rig(x) dx,

where ¢ is subject to the restrictions
1 1 1 1
[_1 g(z) dz = _[—1 zg(x) dx = j_l z¥(x) dz = 0; ,[—1 lg(x)|*dx = 1.

15 Compute
min /w |z — @ — br — cz?|% " d.
abe J0
State and solve the corresponding maximum problem, as in Exer-
cise 14.
16 If zo& H and M is a closed linear subspace of H, prove that

min {jjz — 2o :ze M} = max {{@oy)l: y& M+, fjy|l = 1}.

17 Show that there is a continuous one-to-one mapping v of |0,1] into
H such that y(b) — v(a) is orthogonal to v(d) — v{c) whenever
0<a<b<ece<d<1l (y may be called a “curve with
orthogonal increments.”) Hint: Take H = L2, and consider
characteristic functions of certain subsets of [0,1].

18 Give a direct proof of Theoremn 4.16, i.e., one which does not
depend on the more general considerations of Sec. 4.15,



