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DEPTHS OF THE REES ALGEBRAS AND

THE ASSOCIATED GRADED RINGS

MEE - KYOUNG KIM

1. Introduction

Throughout this paper, all rings are assumed to be commutative with iden-
tity. By a local ring(R,m), we mean a Noetherian ringR which has a unique
maximal idealm. By dim(R) we always mean the Krull dimension ofR. Let
I be an ideal in a ringR andt an indeterminate overR. Then the Rees algebra
R[ I t ] and the associated graded ringgrI (R) of I are defined to be

R[ I t ] = R⊕ I t ⊕ I 2t2⊕ · · ·

and

grI (R) = R/I ⊕ I /I 2 ⊕ I 2/I 3 ⊕ · · ·
These rings are important not only algebraically, but geometrically as well.
For example, Proj(R[ I t ]) is the blow-up of Spec(R) with respect toI .

The purpose of this paper is to investigate the relationship between the
depths of the Rees algebraR[ I t ] and the associated graded ringgrI (R) of
an idealI in a local ring(R,m) of dim(R) > 0. The relationship between
the Cohen-Macaulayness of these two rings has been studied extensively. Let
(R,m) be a local ring andI an ideal ofR. An idealJ contained inI is called
a reduction ofI if J I n = I n+1 for some integern ≥ 0. A reductionJ of
I is called a minimal reduction ofI if J is minimal with respect to being a
reduction ofI . The reduction number ofI with respect toJ is defined by

r J(I ) = min{n ≥ 0 | J I n = I n+1 }.
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The reduction number ofI is defined by

r (I ) = min{r J(I ) | J is a minimal reduction ofI }.

S. Goto and Y. Shimoda characterized the Cohen-Macaulay property of the
Rees algebra of the maximal ideal of a Cohen-Macaulay local ring in terms of
the Cohen-Macaulay property of the associated graded ring of that maximal
ideal and the reduction number of that maximal ideal. Let us state their
theorem.

THEOREM1.1. ([4], Theorem 3.1) Let(R,m) be a Cohen-Macaulay local
ring of dimensiond > 0 and assume thatR/m is infinite. Then the following
conditions are equivalent.
(1) R[mt] is a Cohen-Macaulay ring.
(2) grm(R) is a Cohen-Macaulay ring andr (m) ≤ d − 1.

In a number of cases, this theorem gives a test for determining whether or
not R[mt] is Cohen-Macaulay, becauser (m) is reasonable to compute. For
example, letR= k[[ X2, X3]] and m= (X2, X3)R, wherek is a field andX
is variable overk. Then R is one-dimensional local domain andr (m) = 1.
HenceR[mt] is not Cohen-Macaulay by Theorem 1.1. More generally, if
(R,m) is any one-dimensional local domain which is not a rank one discrete
valuation domain, thenR[mt] is not Cohen-Macaulay by Theorem 1.1.

Let (R,m) be a local ring andI an ideal ofR. The analytic spread ofI ,
denoted byl (I ), is defined to be dim(R[ I t ]/m R[ I t ]). In [13], it is shown that
ht(I ) ≤ l (I ) ≤ dim(R). An ideal I is called equimultipleif l (I ) = ht(I ). If
R/m is an infinite field, thenl (I ) is the least number of elements generating
a reduction ofI ([13]). In particular, allm-primary ideals are equimultiple.
U. Grothe, M. Herrmann and U. Orbanz generalized Theorem 1.1 to the case
of all “equimultiple ideals". We now state the result of Grothe - Herrmann -
Orbanz.

THEOREM1.2. ([5], Theorem 4.8) Let(R,m) be a Cohen-Macaulay local
ring having an infinite residue field andI an equimultiple ideal of heights.
Assume thats> 0. Then the following conditions are equivalent.
(1) R[ I t ] is a Cohen-Macaulay ring.
(2) grI (R) is a Cohen-Macaulay ring andr (I ) ≤ s− 1.
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In general, it is known (cf. [9], Proposition 1.1) that ifR and R[ I t ] are
Cohen-Macaulay, then depth(R[ I t ]) = depth(grI (R))+1. On the other hand,
if grI (R) is Cohen-Macaulay, then depth(R[ I t ]) ≤ 1+ depth(grI (R)) (see
Lemma 3.1). We shall prove that the following equality

depth(R[ I t ]) = depth(grI (R))+ 1

always holds for idealI under negation of the Cohen-Macaulay assumption
on grI (R) and the condition thatR is normally Cohen-Macaulay alongI .
We also characterize that the property of Cohen-Macaulayness ofR[ I t ] and
grI (R) are equivalent for an equimultiple idealI by imposing the condition
of a regular local ring onR. As a general reference, we refer the reader to
[11] for any unexplained notation and terminology.

2. Preliminaries

Let R be a Noetherian ring andI an ideal ofR. Given an elementa ∈ R,
we define

vI (a) =
{

n if a ∈ I n\I n+1

∞ if a ∈ ∩n≥1I n.

When vI (a) = n 6= ∞, the residue class ofa in I n/I n+1 is called the
leading form ofa and denoted bya∗. If vI (a) = ∞, then we seta∗ = 0.

LEMMA 2.1. Let R be a Noetherian ring andI an ideal inR. Let n be a
non-negative integer andb ∈ R. Assume thatbR∩ I i = bI i−n for i ≥ n. Let
R1 = R/bRand I1 = I R1. Then

R1[ I1t ] ∼= R[ I t ]

(b, bt, · · · , btn)

as gradedR-algebras.

Proof. : Note thatbR∩ I j = bR for j < n. Let φ : R[ I t ] −→ R1[ I1t ]
denote the canonical epimorphism. PutK = Kerφ. ThenK is a homogeneous
ideal in R[ I t ].

Claim : K = (b, bt, · · · , btn).
⊇ : It is obvious.
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⊆ : Let z be a homogeneous element ofK with degz= l ≥ 0. Writez= αt l

with α ∈ I l . Then we haveα ∈ bR∩ I l . We have two cases : (1) when
l ≥ n, and (2) whenl < n.
Case (1) :l ≥ n. By assumption we writeα = bc with c ∈ I l−n, and hence

z= αt l = bctl = btn · ctl−n ∈ (btn)R[ I t ].

Case (2) :l < n. From the note, we writeα = br with r ∈ R, and hence

z= αt l = rbt l ∈ (btl )R[ I t ].

LEMMA 2.2. Let R be a Noetherian ring,I an ideal in R and a ∈ R.
Assume thata is a non-zero-divisior onR andaR∩ I n = aI n−1 for n ≥ 1.
Then
(1)

(
aR[ I t ] : at

) = I R[ I t ].
(2) There exists an exact sequence

0−→ grI (R) −→ R[ I t ]

aR[ I t ]
−→

(
R

aR

)[
I

aR
t

]
−→ 0

of gradedR[ I t ]-modules.

Proof. : (1) ⊇ : Let f ∈ I R[ I t ]. Write f = f0 + f1t + · · · + fsts,
where fi ∈ I i+1, i = 0, 1, · · · , s. Then we have

f · at = a( f0t + f1t2+ · · · + fst
s+1) ∈ aR[ I t ].

⊆ : Let f ∈ (aR[ I t ] : at
)

with f = f0 + f1t + · · · + fl t l ∈ R[ I t ]. Then
f · at = ag, whereg = g0+ g1t + · · · + gl+1t l+1 ∈ R[ I t ]. Hence we have

ag0+ (ag1− a f0)t + · · · + (agl+1 − a fl )t
l+1 = 0.

By the nature ofa, fi = gi+1 ∈ I i+1 for i = 0, 1, · · · , l , which concludes the
proof of (1).
(2) Consider the exact sequence

0−→ (a, at)R[ I t ]

(a)R[ I t ]
−→ R[ I t ]

aR[ I t ]
−→ R[ I t ]

(a, at)R[ I t ]
−→ 0
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of gradedR[ I t ]-modules. Moreover

(a, at)R[ I t ]

aR[ I t ]
∼= (at)R[ I t ]

aR[ I t ] ∩ (at)R[ I t ]
= (at)R[ I t ]

(aR[ I t ] : at)(at)

∼= R[ I t ]

(aR[ I t ] : at)
= R[ I t ]

I R[ I t ]
by (1)

∼= grI (R),

and (
R

aR

)[
I

aR
t

]
∼= R[ I t ]

(a, at)R[ I t ]
by Lemma 2.1

Notation : Let G = ⊕n≥0Gn be a non-negatively graded Noetherian ring
such thatG0 is a local ring andA a finitely generated gradedG-module. Then
we define depth(A) to be depthGN (AN), whereN is the unique homogeneous
maximal ideal ofG. We letG+ denote the ideal⊕n≥1Gn.

LEMMA 2.3. ( cf. [3], Lemma 1.1) LetG be a non-negatively graded
Noetherian ring such thatG0 is a local ring andA, B and C be finitely
generated gradedG-modules. Suppose there is an exact sequence

0−→ A −→ B −→ C −→ 0

where the maps are all homogeneous. Then either
(1) depthA ≥ depthB = depthC, or
(2) depthB ≥ depthA = depthC + 1, or
(3) depthC > depthA = depthB.

Proof. : The proof follows from the Ext characterization of depth, and the
long exact sequence for Ext.

DEFINITION 2.4. Let(R,m) be a local ring andI an ideal ofR. We sayR
is normally Cohen-Macaulay alongI if

depth
(
I n/I n+1

) = dim(R/I ) for all n ≥ 0.
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REMARKS. : (1) Let (R,m) be a local ring. ThenR is normally Cohen-
Macaulay along anym-primary idealI .
(2) Let (R,m) be a quasi-unmixed local ring andI an ideal in R with
ht(I ) > 0. Assume thatR is normally Cohen-Macaulay alongI . Then I is
an equimultiple ideal.
(3) Let (R,m) be a local ring andI an ideal ofR, and suppose thatR is
normally Cohen-Macaulay alongI . Suppose thatb∗, the image ofb in R/I ,
is agrI (R)-regular element. ThenR/bR is normally Cohen-Macaulay along
I (R/bR).

Proof. : (1) It is trivial.
(2) Recall that dim(R) = dim(R/I ) + ht(I ) since R is a quasi-unmixed
local ring. R/I n is Cohen-Macaulay for alln ≥ 1 ([6], Lemma 3.8). Then we
have by a result of L. Burch ([1], Corollary in pp. 373)

l (I ) ≤ dim(R)−min
n
{depth(R/I n)}

= dim(R) − depth(R/I n0), for some integern0

= dim(R) − dim(R/I n0)

= ht(I n0)

= ht(I ).

(3) PutR1 = R/bRand I1 = I R1. We have the following isomorphisms

(I1)
n/(I1)

n+1 ∼= I n + bR

I n+1 + bR
∼= I n

I n+1 + bIn
∼= I n/I n+1

b(I n/I n+1)
.

Sinceb∗ is agrI (R)-regular element,b is a non-zero-divisor onI n/I n+1 for
all n ≥ 0. Hence, we have

depth
(
I n
1 /I n+1

1

) = depth
(
I n/I n+1

)− 1

= dim(R/I ) − 1

= dim(R1/I1).
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3. Depths of the Rees algebras and the associated graded rings

LEMMA 3.1. Let (R,m) be ad-dimensional Cohen-Macaulay local ring
and I an ideal ofht(I ) > 0. Then

depth(R[ I t ]) ≤ depth(grI (R))+ 1.

Proof. : Consider the exact sequences

0−→ I t R[ I t ] −→ R[ I t ] −→ R−→ 0 (1)

0−→ I R[ I t ] −→ R[ I t ] −→ grI (R) −→ 0 (2)

of R[ I t ]-modules. From (2) we have that by Lemma 2.3, either

depth(R[ I t ]) ≥ depth(I R[ I t ]) = depth(grI (R)) + 1,

or
depth(grI (R)) ≥ depth(R[ I t ]).

In the second case we are done. Hence we assume that

depth(I R[ I t ]) = depth(grI (R))+ 1. (3)

From (1) it follows that by Lemma 2.3, either

depth(I t R[ I t ]) ≥ depth(R[ I t ]),

or
depth(R[ I t ]) ≥ depth(I t R[ I t ]) = depth(R)+ 1.

But sinceI R[ I t ] ∼= I t R[ I t ] as R[ I t ]-modules, we have

depth(I R[ I t ]) = depth(I t R[ I t ]). (4)

First, if depth(I t R[ I t ]) ≥ depth(R[ I t ]), then

depth(grI (R))+ 1= depth(I R[ I t ]) by (3)

= depth(I t R[ I t ]) by (4)

≥ depth(R[ I t ]).
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Second, if depth(I t R[ I t ]) = depth(R)+ 1, then

depth(grI (R))+ 1= depth(I R[ I t ]) by (3)

= depth(I t R[ I t ]) by (4)

= depth(R)+ 1

= dim(R)+ 1 (R : CML)

= dim(R[ I t ])

≥ depth(R[ I t ]).

Thus, in all cases we have

depth(R[ I t ]) ≤ depth(grI (R)) + 1.

LEMMA 3.2. Let V be a finite-dimensional vector space over the infinite
field K , and let H1, · · · , Hn be proper subspaces ofV . Then there exists
v ∈ V such thatv /∈ H1 ∪ · · · ∪ Hn.

Proof. : We proceed by induction onn. If n = 1, then it is clear. Ifn > 1,
then we can choose an elementα ∈ V such thatα /∈ H1 ∪ · · · ∪ Hn−1 by
inductive hypothesis. By the nature ofHn, there exists an elementβ ∈ V\Hn.
Suppose thatH1 ∪ · · · ∪ Hn = V . Since K is infinite, there are distinct
elementsr1, · · · , rn+1 in K such thatα + r1β, · · · , α + rn+1β are inV . By
the pigeonhole principle, two of them must be in the same subspace, say
α + r iβ, α + r jβ are in Hk for somek, where i 6= j . If k = n, then
(α + r iβ) − (α + r jβ) = (r i − r j )β ∈ Hn. Henceβ ∈ Hn, which is a
contradiction to the choice ofβ. If k < n, then(r i − r j )β ∈ Hk, and hence
β ∈ Hk. Sinceα + r iβ ∈ Hk, it follows thatα ∈ Hk, which is a contradiction
to the choice ofα.

LEMMA 3.3. Let (R,m) be a local ring andI an ideal inR of ht(I ) > 0.
Suppose that

depth(I n/I n+1) > 0 for all n ≥ 0.

Then we can find an elementx ∈ m which is a non-zero-divisor onR/I n for
all n ≥ 0.
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Proof. : Since
⋃

n AssR/I
(
I n/I n+1

) ⊆ AssR/I (grI (R))and AssR/I (grI (R))
is a finite set (cf, [12], Proposition 1.3), and hence

⋃
n AssR/I

(
I n/I n+1

)
is a

finite set. We can choose an elementx ∈ m which is a non-zero-divisor on
I n/I n+1 for all n ≥ 0.

Claim : x is a non-zero-divisor onR/I n+1 for all n ≥ 0.
This will be done by induction onn. The assertion is clear forn = 0. So

we assumen ≥ 1. Sincex is a non-zero-divisor onI n/I n+1 and onR/I n, x
is a non-zero-divisor onR/I n+1 by considering a short exact sequence.

THEOREM 3.4. Let (R,m) be a positive integerd-dimensional Cohen-
Macaulay local ring having an infinite residue fieldk and I an ideal with
ht(I ) > 0. Assume thatgrI (R) is not Cohen-Macaulay andR is normally
Cohen-Macaulay alongI . Then

depth(R[ I t ]) = depth(grI (R)) + 1.

Proof. : The inequality≤ holds by Lemma 3.1. We now prove the other
inequality. We proceed by induction onr = dim(R/I ). We have two cases :
(1) whenr = 0, and (2) whenr > 0.
Case (1) :r = 0. In this caseI is anm-primary ideal ofR. We now proceed
by induction ond = dim(R). Since the inequality is trivial if eitherd = 1 or
depth(grI (R)) = 0, we may assume thatd ≥ 2 and depth(grI (R)) ≥ 1. Since
I is anm-primary ideal ofR, any homogeneous element of degree 0 that is not
a unit is nilpotent ingrI (R). Hence there exists a regular element ingrI (R)+.
That is,grI (R)+ 6⊆

⋃{ Q |Q ∈ Ass(grI (R)) }. For eachQ ∈ Ass(grI (R)),(
(Q ∩ I /I 2) + mI/I 2

)
/(mI/I 2) is a properk-vector subspace ofI /mI by

Nakayama’s Lemma. Sincek is infinite, we can choosea ∈ I \mI such that
the image ofa in I /I 2, a∗, is not in any associated primeQ of grI (R) by
Lemma 3.2. That is,a∗ is agrI (R)-regular element. Hencea is a non-zero-
divisor onR andaR∩ I n = aIn−1 for all n ≥ 1 (cf : [14], Corollary 2.7). We
have an exact sequence

0−→ grI (R) −→ R[ I t ]

aR[ I t ]
−→

(
R

aR

)[
I

aR
t

]
−→ 0

of R[ I t ]-modules by Lemma 2.2. Applying Lemma 2.3, we see that either

depth(grI (R)) ≥ depth

(
R[ I t ]

(a)

)
= depth

((
R

aR

)[
I

aR
t

])
,
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or

depth

(
R[ I t ]

(a)

)
≥ depth(grI (R)) = depth

((
R

aR

)[
I

aR
t

])
+ 1,

or

depth

((
R

aR

)[
I

aR
t

])
> depth(grI (R)) = depth

(
R[ I t ]

(a)

)
.

But asa∗ is agrI (R)-regular element,grI (R)/(a∗) ∼= grI1(R1), whereR1 =
R/aRand I1 = I R1. First, if depth(R[ I t ]/(a)) = depth(R1[ I1t ]), then

depth(R[ I t ]) = depth

(
R[ I t ]

(a)

)
+ 1

= depth(R1[ I1t ])+ 1

≥ depth(grI1(R1))+ 1+ 1

= depth

(
grI (R)

(a∗)

)
+ 2

= depth(grI (R)) − 1+ 2

= depth(grI (R)) + 1.

Second, if depth(R[ I t ]/(a)) ≥ depth(grI (R)), then

depth(R[ I t ]) = depth(R[ I t ]/(a)) + 1

≥ depth(grI (R))+ 1.

Third, if depth(grI (R)) = depth
(
R[ I t ]/(a)

)
, then the assertion is clear. Thus,

this completes the proof of case (1).
Case (2) :r > 0. Assume that the inequality holds forr − 1. SinceR is
normally Cohen-Macaulay alongI , we can choose an elementb ∈ m which is
a regular element onR/I n+1 for all n ≥ 0 by Lemma 3.3, and henceb is a non-
zero-divisor onRandbR∩ I n = bIn for all n ≥ 1 (cf : [6], Lemma 1.35). Ap-
plying Lemma 2.1, we get the following isomorphismR[ I t ]/(b) ∼= R2[ I2t ],
whereR2 = R/bR and I2 = I R2. Hence dim

(
R2/I2

) = dim
(
R/(I , b)

) =
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dim
(
R/I

)− 1, andgrI2(R2) ∼= grI (R)/(b∗) is not Cohen-Macaulay, asb∗ is
a grI (R)-regular element andR2 is normally Cohen-Macaulay alongI2. By
the inductive hypothesis, we have

depth(R2[ I2t ]) ≥ depth(grI2(R2))+ 1.

depth(R[ I t ]) − 1 ≥ depth(grI (R))− 1+ 1.

This completes the proof of case (2).

COROLLARY 3.4.1. ([8], Theorem2.1 ) Let(R,m) be a Cohen-Maca ulay
local ring of dimensiond ≥ 1 andI anm-primary ideal. Assume thatgrI (R)
is not Cohen-Macaulay. Then

depth(R[ I t ]) = depth
(
grI (R)

) + 1.

Proof. : Recall thatR is normally Cohen-Macaulay along anym-primary
ideal.

We next show that the property of Cohen-Macaulayness ofR[ I t ] andgrI (R)
are equivalent for equimultiple ideals by imposing the conditions of aRL R
(Regular Local Ring) onR. In other words, using a consequence of the
Briançon - Skoda Theorem we can drop the conditionr (I ) ≤ s−1 in Theorem
1.2. Recall that an elementa ∈ R is integral over an idealI if it satisfies an
equation of the form

an + r1an−1+ · · · + rn = 0, r i ∈ I i .

The set of all elements which are integral over an idealI form an ideal, denoted
by I and called the integral closure ofI .

REMARKS. : (1) Let R be a Noetherian ring. Then an idealJ ⊆ I is a
reduction ofI if and only if I ⊆ J.
(2) The Brianc¸on-Skoda Theorem (see [2], [10], or [7]) states that if(R,m) is
a regular local ring andI is an ideal generated byn elements, thenI n ⊆ I .
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LEMMA 3.5. Let (R,m) be a regular local ring with an infinite residue
field andI an equimultiple ideal withht(I ) = s > 0. Assume thatgrI (R) is
a Cohen-Macaulay ring. Then there exist elementsa1, · · · , as in I such that
I s = (a1, · · · , as)I s−1.

Proof. : Let (a1, · · · , as) be a minimal reduction ofI . Let b1, · · · , br

be a system of parameters modI , wherer = dim(R/I ) = dim(R) − ht(I ).
Then{ b∗1, · · · , b∗r , a∗1, · · · , a∗s } is a homogeneous system of parameters for
grI (R), where degb∗i = 0 for i = 1, · · · , r , and dega∗j = 1 for j = 1, · · · , s
(cf : [5],Corollary 2.7). Hence it is agrI (R)-regular sequence sincegrI (R) is
Cohen-Macaulay. We have(a1, · · · , as)

⋂
I n = (a1, · · · , as)I n−1, ∀n ≥ 1

(cf : [14],Corollary 2.7).(a1, · · · , as)
s is a reduction ofI s since(a1, · · · , as)

is a reduction ofI . Then

(a1, · · · , as)
s ⊆ I s ⊆ (a1, · · · , as)s ⊆ (a1, · · · , as).

Hence we have

(a1, · · · , as)I
s−1 = (a1, · · · , as)

⋂
I s = I s.

THEOREM3.6. Let(R,m)be a regular local ring an infinite residue field and
I an equimultiple ideal withht(I ) = s > 0. Then the following conditions
are equivalent.
(1) R[ I t ] is a Cohen-Macaulay ring.
(2) grI (R) is a Cohen-Macaulay ring.

Proof. : (1)H⇒ (2) : This follows from Proposition 1.1 in [9].
(2) H⇒ (1) : By Lemma 3.5, there exist elementsa1, · · · , as in I such that
I s = (a1, · · · , as)I s−1. This impliesr (I ) ≤ s−1, which proves the assertion
from Theorem 1.2.

COROLLARY 3.6.1. (Huneke, [8], Proposition 2.6) Let(R,m)be a regular
local ringdim(R) = d > 0 with an infinite residue field andI anm-primary
ideal of R. ThenR[ I t ] is Cohen-Macaulay if and only ifgrI (R) is Cohen-
Macaulay.
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COROLLARY 3.6.2. Let (R,m) be a regular local ring andI an ideal ofR
with ht(I ) > 0. Assume thatR is normally Cohen-Macaulay alongI . Then

depth(R[ I t ]) = depth(grI (R)) + 1.

Proof. : Case (1) : IfgrI (R) is not Cohen-Macaulay, then we have the
equality by Theorem 3.4.
Case (2) : IfgrI (R) is Cohen-Macaulay, then we see thatI is equimultiple
sinceR is normally Cohen-Macaulay alongI . Hence we have the equality by
Theorem 3.6.

COROLLARY 3.6.3. Let (R,m) be a regular local ring of dimensiond > 0
and I anm-primary ideal. Then

depth(R[ I t ]) = depth(grI (R)) + 1.
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