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f ′(θ) =
θ cos θ − sin θ

θ2
=

cos θ − (sin θ)/θ

θ

=
cos θ − cos ξ

θ
(0 < ξ < θ).

Since the cosine is a decreasing function in the interval [0, π/2], f ′(θ) < 0 and
the result follows.

Example 9.33. We wish to show that∫ ∞

0

sin x

x
dx =

π

2
.

Our first inclination is to integrate (sin z)/z along the same contour as in the
previous example. This does not work for two reasons. First, (sin z)/z has a
singularity at z = 0 and we can not usually integrate along a path that passes
through a singularity point. But the singularity is removable; so this difficulty
can be overcome. Second, and more important as was indicated earlier, the
integral of (sin z)/z along the semicircle does not approach a finite limit as
the radius tends to infinity, because for z = iR one sees that

lim
R→∞

sin(iR)
iR

= lim
R→∞

e−R − eR

2i2R
→ ∞ as R → ∞.

We will consider the function eiz/z, whose imaginary part on the real
axis is (sin x)/x. Our contour C will consist of the real axis from ε to R, the
semicircle in the upper half-plane from R to −R, the real axis from −R to
−ε, and the semicircle in the upper half-plane from −ε to ε (see Figure 9.5).
The function eiz/z is analytic inside and on C, so that

0 =
∫

C

eiz

z
dz

=
∫ R

ε

eix

x
dx +

∫ π

0

eiReiθ

Reiθ
iReiθ dθ +

∫ −ε

−R

eix

x
dx +

∫ 0

π

eiεeiθ

εeiθ
iεeiθ dθ

=
∫ R

ε

eix − e−ix

x
dx + i

∫ π

0

eiReiθ

dθ − i

∫ π

0

eiεeiθ

dθ

0

Figure 9.5.
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where we have replaced x by −x in the third integral and combined with the
first integral. Since eix − e−ix = 2i sinx, the last equation may be rewritten
as

0 = 2i
∫ R

ε

sinx

x
dx + i

∫ π

0

eiReiθ

dθ − i

∫ π

0

eiεeiθ

dθ. (9.21)

We now examine the behavior of the second integral on the left side of (9.21).
From the identity sin(π − θ) = sin θ and the lemma, it follows that

∣∣∣∣i
∫ π

0

eiReiθ

dθ

∣∣∣∣ ≤
∫ π

0

e−R sin θ dθ = 2
∫ π/2

0

e−R sin θ dθ

≤ 2
∫ π/2

0

e−(2R/π)θ dθ

=
π

R
(1 − e−R),

which tends to 0 as R approaches ∞. Hence letting R → ∞ in (9.21) leads to

2
∫ ∞

ε

sin x

x
dx =

∫ π

0

eiεeiθ

dθ. (9.22)

For 0 < ε < 1/2, we expand eiεeiθ

in a power series to show that

|eiεeiθ − 1| < 2ε

for all θ, 0 < θ ≤ π. We see that∫ π

0

eiεeiθ

dθ =
∫ π

0

(eiεeiθ − 1) dθ +
∫ π

0

dθ → π as ε → 0.

Thus, letting ε → 0 in (9.22), it follows that

2
∫ ∞

0

sin x

x
dx = π

and the result follows. The reader should verify that the contour in Figure 9.6
could also have been used to prove the desired result. •

Let us demonstrate the method by evaluating another integral

I =
∫ ∞

0

x sin(ax)
x2 + m2

dx (a, m > 0).

Note that the limits of integration in the given integral are not from −∞ to
∞ as required by the method described above. On the other hand, since the
integrand is an even function of x,


